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A prospective case–control 
pilot study to evaluate bone 
microarchitecture in children 
and teenagers on long‑term 
parenteral nutrition using HR‑pQCT
Typhaine Louazon1,2, Pierre Poinsot1, Lioara Restier1, Abdelouahed Belmalih1, 
Irène Loras‑Duclaux1, Stéphanie Marotte1, Sophie Heissat1, Didier Barnoud3, 
Cécile Chambrier3, Cyrille B. Confavreux4,5, Alain Lachaux1,2,7, Justine Bacchetta2,5,6 & 
Noel Peretti1,2,7*

Long-term parenteral nutrition (PN) may induce bone complications. Tridimensional bone imaging 
techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT) allow 
the assessment of both compartmental volumetric densities and microarchitecture. Our aim was to 
evaluate these parameters in children and teenagers receiving long-term PN. This cross-sectional, 
case–control study included children older than 9 years undergoing PN for at least 2 years. They 
were age-, gender- and puberty-matched with healthy controls (1:2). Evaluation included biological 
assessment of bone metabolism (serum calcium, phosphate, and albumin; urinary calcium and 
creatinine; 25-OH vitamin D, osteocalcin and PTH), dual X-ray absorptiometry (DXA) and HR-pQCT 
at the ultradistal tibia and radius. Results are presented as median [range]. Eleven patients (3 girls) 
with a median age of 16 [9–19] years were included. Bone parameters assessed by HR-pQCT at the 
ultradistal radius and tibia were similar in patients and controls. Parathyroid hormone (PTH) levels 
were higher (14 [7–115] vs 16 [12–27]) and osteocalcin levels were lower (44 [15–65] vs 65 [38–142]) in 
patients than in controls, although within the normal range. Conclusions: there were no differences 
for compartmental bone densities and microarchitecture in patients undergoing chronic PN. Further 
longitudinal studies are required to confirm these quite reassuring preliminary results.

Long-term parenteral nutrition (PN) is the most efficient way to prevent malnutrition in patients with severe 
intestinal failure (IF). However, PN may induce complications such as bone impairment, also called PN-associ-
ated metabolic bone disease (PN-MBD)1–6. PN-MBD was first described in 19805,7. It is associated with osteo-
porosis and impaired mineralization8. Very few data are available on its exact prevalence, but it is estimated to 
range from 40 to 90% in adults and from 25 to 80% in children and teenagers9–12.

PN-MBD may be associated with metabolic abnormalities such as hypercalcemia, hypercalciuria, acidosis 
and hypophosphatemia. Even though the pathophysiology of PN-MBD remains to be fully determined, differ-
ent parameters are nevertheless known to increase the risk of PN-MBD, namely inadequate PN composition 
(calcium, phosphate, and lactate), the presence of an underlying inflammatory disease, and treatment with 
corticosteroids.
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Teenagers are particularly at risk for PN-MBD because of growth and acquisition of 25% of bone mass dur-
ing puberty (and 90% over the first two decades of life). However, there are very limited data on long-term bone 
impairment in children and teenagers undergoing long-term PN.

Dual X ray Absorptiometry (DXA) is the most used technique to assess bone quantity; it is recommended to 
assess the longitudinal bone health for children at risk13. Total bone mineral content (TBMC) must be used for 
bone assessment according to these recommendations, expressing z scores with reference data based at least on 
age and gender. However, DXA has some technical limitations, especially in growing children and teenagers13–15: 
(i) DXA measures areal density rather than volumetric density that can be modified by growth; (ii) it is unable 
to evaluate separately trabecular and cortical bone that are sometimes impaired independently; and (iii) DXA 
cannot determine bone microarchitecture, which is a major determinant of the risk of bone fracture16.

Therefore, innovative tridimensional and non-invasive bone imaging techniques have been developed in 
the early 2000s, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), allowing 
the assessment of both compartmental (i.e. total, cortical and trabecular) volumetric densities and trabecular 
microarchitecture in vivo14,17–20. This improved bone assessment, especially in children and teenagers whose 
bones continually grow in mass, size, and shape. To our knowledge, HR-pQCT has never been studied in pedi-
atric patients receiving long-term PN.

We hypothesized that children and teenagers receiving chronic PN may display significant bone microarchi-
tecture differences compared with controls matched for age, gender and pubertal status.

The objectives of this pilot study were (1) to determine the density and bone microarchitecture in children 
and teenagers receiving long-term PN compared to healthy controls, using HR-pQCT; (2) to compare HR-pQCT 
results to DXA measurements; and (3) to evaluate the biological markers of bone metabolism.

Patients and methods
This cross-sectional, comparative case-controlled pilot study was performed in the home parenteral nutrition 
pediatric unit of a university pediatric hospital between March 2014 and June 2015.

Patients.  Inclusion criteria were children receiving home PN for more than 2 years for intestinal failure, 
which seems a sufficiently long period to evaluate the impact of PN on bone metabolism; older than 9 years of 
age due to technical limitations of HR-pQCT (need to have a perfectly still child), and with regular follow-up in 
a university HPN center. Exclusion criteria were congenital bone diseases (2 patients with McKusick syndrome) 
and corticosteroid use for more than one month during the 6 previous months (1 patients with rheumatologic 
inflammatory disease).

For each assessment, the patient’s anthropometric data were collected: birth term, birth height and weight, 
gender, weight, height, BMI, and Tanner status. For the same patient, all anthropometric measurements were 
performed by the same operator during follow-up appointments in a standardized manner: for height, with a 
wall height chart with increments of 0.5 cm; for weight, with a calibrated scale with increments of the nearest 
0.1 kg. The Z-scores were calculated for each value according to national data references21. Tibia length was 
measured, the knee flexed at 90%, from the proximal margin of the medial malleolus to the proximal border of 
the medial tibial condyle (manually located) with a tape measure by the same trained operator. For each patient, 
IF characteristics and bone complication histories were obtained from medical files: IF etiology and intestinal 
residual length with or without ileocecal valve, fractures and bone pain.

PN was formulated according to the child’s individual needs.
The study was approved by a local independent ethics committee (CPP Lyon Sud-Est II, ID-RCB2013-

A01245-40), parental informed consent was obtained for each pediatric patient, and all methods were per-
formed in accordance with the relevant guidelines and regulations. The study was registered in Clinical Trial 
(NCT02368496; 23 February 2015).

Healthy volunteers.  Each patient undergoing PN participating in this study was matched by gender, age 
and pubertal status (Tanner stage) to two controls recruited concomitantly and locally in the VITADOS cohort 
of healthy children (NCT 01832623; 16 April 2013), as previously published22.

Biological data.  All biological analyses were performed in the same laboratory, immediately after blood 
sample, in the morning with fasted patients. Usually, in children or adolescent with long-term PN, the frequency 
of standard biological follow-up is each 3 month when patients are stable. Serum calcium, phosphate, albumin, 
urinary calcium and creatinine were measured by routine laboratory methods. Intact parathyroid hormone was 
measured with a second generation assay (Roche Elecsys, Roche Diagnosis, Mannheim, Germany), 25-OH vita-
min D with a radio-immunological technique (DiaSorin Assay, DiaSorin Diagnosis, Saluggia, USA), and serum 
NMID osteocalcin (N-terminal mid fragment of osteocalcin) with immune-chemiluminescence (LIAISON 
XL, DiaSorin Diagnosis, Saluggia, USA). Glomerular filtration was calculated with the new equation published 
before23.

HR‑pQCT.  HR-pQCT measurements were performed at the non-dominant limb unless there was a history of 
fracture, as previously reported by our team in children24. Volumetric bone mineral density (vBMD) and bone 
microstructure were measured at the distal radius and tibia using a HR-pQCT device (XtremeCT, SCANCO 
Medical AG, Brüttisellen, Switzerland) that acquires a stack of 110 parallel CT slices with an isotropic voxel size 
of 82 µm. A scout-view (dorsal–palmar radiography) allowed positioning of a reference line at the endplate. The 
first slice of the ROI was set at 22.5 mm of the reference line at the ultra-distal tibia and 9.5 mm at the ultra-distal 
radius, which extended proximally on 110 slices, i.e., 9.02 mm in the axial direction, as previously described. 
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The following imaging settings were used: effective energy = 60 kVp, X-ray tube current = 900µA, integration 
time = 100 ms. The 126 mm field of view was reconstructed on a 1536 × 1536 matrix, yielding 82 µm isotropic 
voxels. The total scan time was 2.8 min with an equivalent dose of approximately 3 μSv. Attenuation data were 
converted to equivalent hydroxyapatite (HA) densities. A phantom was scanned daily for quality control.

For the standard analysis, a trained operator generates semi-automatic contours around the periosteal surface 
in scans without motion artifact; the entire volume of interest is thereafter automatically separated into a cortical 
and trabecular region. The outcome variables included total area (Tt.Ar, mm2), volumetric bone density (mg 
HA/cm3) for total (Tt.BMD), trabecular (Tb.BMD), and cortical (Ct.BMD) compartments; cortical thickness 
(Ct.Th, µm); and trabecular number (Tb.N, mm-1), thickness (Tb.Th, µm), separation (Tb.Sp, µm), and intra-
individual distribution of separation (Tb.Sp.SD, µm). In clinical practice, the higher the trabecular number and 
thickness, the better the trabecular status; the lower the trabecular separation and distribution, the better the 
trabecular status.

DXA: dual X‑ray absorptiometry.  Whole body DXA and spine DXA were performed with a fan beam 
(Hologic Discovery W, Hologic, Inc., Bedford, MA) in the array using standard positioning techniques. We per-
formed the standard pediatric protocol of total body less head. The Lumbar spine measurements included L1-L4. 
The DXA whole body and spine scans were analyzed to generate measures of whole body projected bone area 
(cm2), bone mineral content (BMC) (g) and bone mineral density (BMD) (g/cm2). Lean mass (kg) and fat mass 
(FM) (kg) were obtained from the whole body DXA scan excluding the skull.

Statistical analysis.  Statistical analyses were performed using the SPSS Software. All eligible patients were 
included. Comparisons between patients and controls were performed using the nonparametric Wilcoxon signed 
rank test since the number of patients was low. Correlations between density, microarchitectural and biologi-
cal parameters were computed with the Spearman bivariate analysis. All statistical tests were performed at the 
two-sided 0.05 level of significance. Data are presented as median, minimum and maximum: med [min–max].

Results
Subjects characteristics.  We included 11 patients and 22 controls. Anthropometric and clinical data for 
patients and controls are summarized in Table 1.

The median age of initiating PN was 17 (0–150) months, and this nutritional support was given for a median 
of 10.3 (6.4–18.3) years at the time of this study.

All patients receiving long-term PN had intestinal failure; etiologies are indicated in Table 1.
Two patients at the time of examination had withdrawn PN since 4 months and 5 months respectively. Calo-

ries in parenteral nutrition represented a median intake of 77 (40–190) % of recommended dietary allowances. 
All patients also had oral supplementation: 100 000 UI of vitamin D3 each 3 months. Median vitamin D3 intake 
in PN was 220 (0–250) UI/day. Table 2 summarizes the main PN parameters applied to this cohort.

Three patients had also enteral nutrition during PN or during nights without PN.
Four patients and one control had history of long bone fracture, none had a vertebral fracture and none had 

more than two fractures. All were traumatic fractures.

Biological parameters.  Biological parameters for patients and controls are also summarized in Table 1. 
Nutritional biological parameters (albumin, prealbumin, urea, creatinin and eGFR according to the recent equa-
tion) were normal in the 2 groups; however compared to controls, PN patients displayed lower median albumin 
levels (84% of controls; p = 0.015) but higher prealbumin (127% of controls; p = 0.035) and urea levels (114% 
of controls; p = 0.048). Parameters of calcium/phosphate and bone metabolism (calcium, phosphate, urinary 
calcium to creatinine ratio, 25 hydroxy-vitamin D and total alkaline phosphatase) were similar between the two 
groups. However, PN patients displayed higher but normal PTH (256% of controls; p = 0.003) and lower but 
normal osteocalcin plasmatic levels (67% of controls; p = 0.005), as compared to controls.

HR‑pQCT.  At the radius, no significant differences were observed between controls and PN patients, as illus-
trated in Table 3. However at the tibia, PN children displayed a lower trabecular area compared to controls (470 
[124–675] vs 606.5 [369–897] µm2, p = 0.003).

DXA and body composition.  Body composition data are summarized in Tables 3 and 4. BMC was similar 
to controls; only the BMD of the whole body was significantly lower in patients (0.81 [0.54–0.96] vs 0.92 [0.66–
1.35], p = 0.039). In terms of body composition, the global distribution was similar between patients and healthy 
patients. However patients differed according the gynoid lean and total mass distribution. The android-gynoid 
ratios and the BMI were similar to the controls.

Discussion
This pilot prospective study is the first to evaluate bone microarchitecture with HR-pQCT in pediatric patients 
undergoing long-term PN in comparison to healthy controls. The main results are: (1) reassuring results for 
bone quality and body composition evaluated by both HR-pQCT (with similar densities and microarchitecture 
between PN patients and controls) and DXA (with BMC similar to controls); and (2) higher but normal PTH 
levels despite correct vitamin D levels, with lower but normal osteocalcin levels in PN patients as compared to 
controls.
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PN‑associated metabolic bone disease.  The main previous studies that have described bone diseases 
in patients receiving home PN were adult studies5,8,11. The first pediatric study was published in 201025. Of note, 
83% of these patients had bone mineral deficiency and 17% had fractures. Different studies evaluated longitudi-
nal evolution and predictive factors, including intestinal failure-related factors and parenteral nutrition-related 
factors15,25–27. Risk factors identified were: (1) the etiology of intestinal failure: patients with a small bowel syn-

Table 1.   Characteristics of patients and controls. Results as median [min–max], CIPO Chronical intestinal 
pseudo obstruction, Creatinine clearance according to new Schwartz equation (0.413*(height/serum 
creatinin), CRP: C reactive protein, OC: osteocalcin; SDS: Standard deviation, using national reference growth 
charts, TPN: Total Parenteral Nutrition.

Patients Healthy controls p

Anthropometry

Girls 3 6

Boys 8 16

Age (years) 16 [9–19] 16 [10–17] NS

Weight (kg) 46 [23–73] 56 [31–77] NS

(SDS) − 1 [− 3–1] 0.4 [− 1.6–2.5]  < 0.001

Height (cm) 157 [119–173] 168 [131–187] 0.017

(SDS) − 2 [− 3–0] 0.9 [− 1.5–3]  < 0.001

BMI 19.05 [16.2–25.1] 19.2 [15.5–24.1] NS

Arm length (cm) 24.5 [18–27] 25.5 [20–31] NS

Leg length (cm) 34 [26–38] 37 [29–42] NS

Puberty (tanner) IV [I–V] IV [I–V] NS

Intestinal characteristics

Length of intestine (cm) 90 [30–200]

Absence of ileocecal valve 1

Intestinal insufficiency etiologies n (%)

Short bowel syndrome 6 (55%)

 CIPO 3

 Intestinal atresia 3

Congenital enteropathy 3 (27%)

Lymphangiectasia 1 (9%)

Immunodeficiency 1 (9%)

Biology

Bicarbonate (mmol/L) 27 [22–29] 29 [24–32] 0.003

Albumin (g/L) 38 [25–49] 45 [40–51] 0.015

Pre albumin (g/L) 0.33 [0.13–0.43] 0.26 [0.17–0.32] 0.035

CRP (mg/L) 0 [0–25] 0 [0–2] NS

Urea (mmol/L) 4 [3–8] 3.5 [2–7] 0.048

Creatinine (µmol/L) 58 [36–98] 64 [37–94] NS

eGFR (mL/min per 1.73 m2) 108 [56–129] 94 [73–129] NS

Calcemia (mmol/L) 2.29 [2.02–2.5] 2.38 [2.26–2.54] NS

Phosphoremia (mmol/L) 1.39 [1.02–1.82] 1.29 [1.05–1.79] NS

Calciuria (mmol/L) 0.94 [0.15–5.26] 2.99 [0.38–12.69] NS

Ca/creat urinary ratio 0.16 [0.01–1.38] 0.13 [0.02–0.81] NS

25-OH vitamin D3 (nmol/L) 44 [24–122] 57 [30–123] NS

Alkaline phosphatase (UI/L) 173 [70–438] 180 [66–311] NS

Bone alkaline phosphatase (UI/L) 35 [18–98] 71 [13–151] NS

Serum crosslaps (pmol/L) 1252 [484–2211] 1562 [688–2853] NS

OC-DiaSorin (µg/L) 44 [15–65] 65 [38–142] 0.005

Parathyroid hormone (ng/L) 41 [7–115] 16 [12–27] 0.003

Outcome at time of HrpQCT, n (%)

Weaning off home TPN 2 (18%)

Continuing home TPN 9 (82%)

Death 0

Intestinal transplantation 0
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Table 2.   Content of parenteral nutrition. Results as median [min–max], PN: parenteral nutrition, RDA: 
recommended dietary allowances.

Parenteral nutrition components (median [min–max])

Age at beginning of PN (months) 17 [0–150]

Mean duration of PN (months) 124 [77–220]

Days/week 5 [3–7]

Days with lipids/week 4 [0–5]

Volume of PN 1500 [1000–3600]

Volume of PN/kg 42 [29–72]

Lipids (g/kg/infusion) 1.5 [0–2]

Carbohydrates (g/kg/infusion) 10 [5–18]

Nitrogen (g/kg/infusion) 0.23 [0.1–0.4]

Calcium (mmol/kg/infusion) 0.35 [0–0.88]

Magnesium (mmol/kg/infusion) 0.3 [0.1–0.6]

Phosphorus (mmol/kg/infusion) 0.6 [0.3–1]

Acetates (mmol/kg/infusion) 1 [0–2]

CERNEVIT (bottle/perfusion) 1 [0–2.5]

Vitamin D3 (UI/perfusion) 220 [0–550]

Trace elements (mL/kg/perfusion) 2 [0–2]

Calories (kcal/kg/infusion) 53.5 [25–90]

%PN RDA 77 [41–190]

Table 3.   HR-pQCT and DXA values between patients and healthy controls. Results as median [min–max], Ar: 
Area, Ct: cortical, BMC: bone mineral content, BMD: bone mineral density, Ct-Ar: cortical area, HR-pQCT: 
high resolution peripheral quantitative computed tomography, Tb: trabecular, TbN: trabecular number, 
TbSp: trabecular separation, TbSpSD: heterogeneity of trabecular separation, TbTh: trabecular thickness, Th: 
thickness, vBMD: volumetric bone mineral density, p < 0.05 significant. Of note: tota body scan excluded the 
head.

HR-pQCT

RADIUS TIBIA

Patients Healthy controls p Patients Healthy controls p

Cortical

Ct-Th (µm) 505 [50–980] 480 [130–1080] NS 1100 [280–1390] 1010 [280–1480] NS

Ct-Ar (µm2) 33 [3–67] 28 [8–81] NS 82 [29–134.4] 108 [25–169] NS

Ct-vBMD (mg/µm3) 696 [450–859] 699 [524–887] NS 815 [641–898] 768 [606–912] NS

Trabecular

Tb-Ar (µm2) 196 [110–288] 244 [120–360] NS 470 [124–675] 607 [369–897] 0.003

Tb-vBMD (mg/µm3) 215 [166–333] 199 [122–298] NS 316 [176–389] 283 [218–368] NS

Tb-Th (µm) 790 [730–1160] 830 [620–990] NS 77 [71–108] 87 [77–106] NS

Tb.Sp (µm) 370 [301–456] 418 [296–546] NS 482 [324–670] 447 [326–579] 0.063

Total

Total-vBMD (mg/µm3) 303 [223–415] 276 [187–376] NS 316 [176–389] 283 [218–368] NS

DXA Patients Healthy controls p

SPINE total

Area (cm2) 51 [33–70] 61 [38–71] 0.048

BMC (g) 40 [14–66] 56 [20–97] NS

BMD (g/cm2) 0.8 [0.4–0.9] 0.9 [0.5–1.4] NS

Whole body

Area (cm2) 1480 [820–1986] 1795 [1077–2319] NS

BMC (g) 1198 [441–1832] 1638 [713–3129] NS

BMD (g/cm2) 0.81 [0.54–0.96] 0.92 [0.66–1.35] 0.039
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drome were more at risk for bone disease; (2) the duration of PN was correlated to lower lumbar BMD; (3) others 
factors such as the small bowel length and the presence of the ileocecal valve did not predict BMD.

Compared to previous pediatric studies, our cohort had less PN-MBD (only 2 (18%) patients had a whole 
body BMC ≤ − 2 DS). Several reasons may explain this discrepancy: the etiologies are different since we excluded 
patients with inflammatory bowel disease and patients having received steroid therapy for more than 1 month 
during the 6 previous months. These etiologies differ from other studies describing lower bone mineral density 
in patients on long-term PN which may include inflammatory bowel disease4,8,9,11. We can also hypothesize that 
the treatment and patient care were effective in preventing bone deterioration.

A significant fracture history is defined by either one or more vertebral crush fractures, two or more long 
bone fractures by 10 years of age, or three or more fractures by 19 years of age12. The clinical bone history of 
our patients indicates that four patients had a past of bone fracture, and only one control subject. However, as 
noted below, radiological exams (HR-pQCT and DXA) were not significantly different between the two groups. 
It seems unlikely that all radiological measurements are ineffective to identify the risk of bone fracture, and we 
face here one of the main limitations of this cohort namely its limited size.

Determination of the density and bone microarchitecture in children and teenagers with long-term PN.
Compared to DXA, the main objective of HR-pQCT is to evaluate microarchitectural composition. Low 

trabecular area and high trabecular separation are associated with an increased risk of osteoporosis. This profile 
associated with bone fragility is described only at the ultra-distal tibia of our patients, and only with a small 
difference. However, there are no significant differences in cortical parameters that are involved more in bone 
strength than trabecular ones. Many studies have shown an increased cortical vBMD with age without modifi-
cations of trabecular parameter18,28,29. Cortical vBMD measured by HR-pQCT increased with puberty in both 
genders28. Therefore, this small difference reported only at the ultra-distal tibia of patients should have only a 
minor effect if any on bone solidity.

Comparison of HR‑pQCT results to DXA measurements.  Our study seems to indicate very mild dif-
ferences of mineral status with both radiological techniques when compared patient to healthy controls. On one 
hand, HR-pQCT indicates no difference in BMD but only minor trabecular changes at the tibia; on the other 
hand DXA indicates no alteration of the main parameters (namely spine BMD, BMC or whole body BMC that 
correspond to the recommended measure sites in pediatrics)30.

BMD had divergent results with the two radiological techniques: HR-pQCT measured similar total volu-
metric BMD in patients and controls. In contrast, DXA showed a significant lower whole body subtotal BMD in 
patients. This may suggest that (1) inherent differences between the radiological techniques (HR-pQCT versus 
DEXA); (2) BMD of the ultra-distal radius and tibia do not reflect whole body BMD, but previous studies have 
found DXA spine and hip scans do correlate with HR-pQCT radius and tibia scans; (3) HR-pQCT and DXA 
evaluate bone composition differently; (4) our patients were smaller than controls but had a similar BMI. That 
could explain a lower BMD with DXA. DXA relies on areal density rather than volumetric density that can be 
modified by growth. Therefore, the risk of underestimating BMD in small children and overestimating BMD in 
tall children is well known13,31.

Evaluation of the biological markers of bone metabolism.  Very few pediatric studies accurately 
assessed the biological markers of bone metabolism in PN. We did not find biological abnormalities in this study 
for the markers of bone metabolism; however, as compared to controls, our patients displayed different levels of 
PTH and osteocalcin that however both remained within the normal range.

Indeed, patients displayed a relative hyperparathyroidism: PTH levels were within the normal range, but 
significantly higher in patients compared to controls. Hyperparathyroidism in patients on long-term PN has been 
previously described26,32. A relationship between hyperparathyroidism and bone remodeling was also previously 
described in adults33,34. In our patients, this higher level of PTH is not explained by a lower vitamin D level, which 
is similar to healthy controls. Based on international recommendations, a partial deficiency could be considered 
in patients and controls since vitamin D levels should be higher than 75 nmol/L35. The recommendation for 

Table 4.   Comparisons of data measurements of body composition by DXA between patients and healthy 
controls. Results as median [min–max], BMC: bone mineral content, BMD: bone mineral density.

Patients Healthy controls p

Subtotal fat (g) 8048.87 [4881.2–15,698.5] 9106.7 [5591.6–18,676.3] NS

Subtotal lean (g) 37,992.2 [15254.6–58,414.1] 48,237.1 [24213.4–70,779.9] NS

Subtotal mass (g) 45,188.6 [23457.1–74,112.6] 56,505.3 [31797.6–78,710.9] NS

Android fat (g) 453.6 [234.9–892.6] 456.9 [215.9–1096.2] NS

Android lean (g) 2664.7 [1052.8–4586.9] 2959.8 [1440.1–4553.9] NS

Android mass (g) 3214.6 [1531.6–5479.5] 3473.3 [1796.5–4999.9] NS

Gynoid fat (g) 1356.3 [734.1–3029.3] 1734.5 [921.2–3885.3] NS

Gynoid lean (g) 5286.7 [1843.8–8338.4] 7216.1 [3016.9–10,935.1] 0.047

Gynoid mass (g) 6509.4 [3238.4–11,367.7] 8881.8 [4443.9–12,669.6] 0.025

Android-gynoid ratio 0.67 0.74 NS
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parenteral vitamin D intakes are 400 UI/day36. Our patients received only a median intake of 268 ± 0.87 UI/day 
in perfusion, but also an oral supplementation of vitamin D every 3 months. Therefore, intestinal malabsorp-
tion could explain their low plasmatic level of vitamin D; this result should encourage increasing oral doses and 
closely monitoring plasmatic vitamin D.

Low calcemia and high phosphoremia could explain a higher PTH. This hormone increases calcium levels 
and decreases phosphate levels, through a stimulation of 1–25 OH2 vitamin D synthesis and further activation 
of intestinal calcium absorption, through a stimulation of tubular calcium reabsorption and through an inhibi-
tion of the apical expression of the sodium/phosphate transporters Npt2 thus inducing phosphaturia. Last, PTH 
also has biphasic effects on bone, depending on the levels of PTH and its pulsatility. In our patients, calcium and 
phosphate parenteral intakes are within the range of the recommendations Calcium 0.35 for 0.25–0.4 mmol/
kg/day and phosphate 0.6 for 0.2 to 0.7 mmol/kg/day, whereas the rates of calcemia and phosphatemia were 
similar in the two groups37. Unfortunately, we do not have urinary calcium and phosphate levels for all patients 
to evaluate tubular reabsorption. However, the Ca/creat urinary ratio was normal and not different between 
patients and controls.

Finally, an acid–base imbalance could also increase PTH levels. Indeed, metabolic acidosis rapidly inhibits the 
CaSR that causes PTH release and relative hyperparathyroidism. Acid–base balance was not specifically studied 
in this cohort, even if PN patients displayed significant lower plasma bicarbonate concentrations in comparison 
to controls. However, the values are normal and the difference does not seem clinically relevant.

Osteocalcin.  Patients had a significantly lower osteocalcin levels than controls. Osteocalcin is produced by 
differentiated osteoblasts. Furthermore, non-carboxylated osteocalcin regulates glucose homeostasis by increas-
ing insulin secretion and decreasing insulin resistance.

Osteocalcin level is influenced by different parameters: (1) gender: higher in women; (2) age with a decrease 
with age in both men and women, and especially during puberty38; (3) physical activity: higher after a run. As 
our patients are gender- and age-matched with controls, variations of osteocalcin could indicate an impaired 
glucose metabolism38–40. Unfortunately, we do not have the parameters to evaluate this hypothesis such as, for 
example, the Homeostasis Model Assessment (HOMA) scale of insulin resistance (insulin (mUI/L) × glucose 
(mmol/L)/22.5)41–43. It would be interesting for a future study to collect insulin and glucose levels in these 
patients.

Several limitations of this study may be highlighted. It is a monocentric study with a small cohort. However, 
this study was designed as a pilot study, and children receiving long-term PN are rare. Another limitation in the 
interpretation of results is the significant difference observed in height and body weight between patients and 
controls, likely explaining the lower trabecular area observed at the weight-bearing tibia in PN patients. Body 
size differences alone could account for any discrepancies between the clinical and healthy groups, an adjustment 
for height between patients and controls would ideally be useful. Even though we selected the smallest subjects 
among the controls (after matching for gender, age and puberty), it was impossible to adjust for height given the 
difference of height between controls and patients. However, odd differences in height between groups is little, 
and limb length is similar between the 2 groups; therefore we believe that these two limitations are not crucial 
in view of the observed results, namely the absence of significant differences in bone status between controls 
and PN patients28,44,45.

Conclusion and perspectives
This first study evaluating microarchitecture in children receiving long-term PN provides quite reassuring results: 
the innovative imaging technique HR-pQCT did not find any deterioration of bone outcomes in our cohort after 
more than 10 years of PN. However, the small sample size requires caution in interpretation. Further longitudinal 
studies, with larger cohorts, are required to confirm these data and to determine if such techniques could help 
physicians improve the therapeutic management of children receiving long-term PN.
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